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The Sequence Read Archive (SRA) contains over one million publicly available sequencing runs from              
various studies using a variety of sequencing library strategies. These data inherently contain information              
about underlying genomic sequence variants which we exploit to extract allelic read counts on an               
unprecedented scale. We reprocessed over 250,000 human sequencing runs (>1000 TB data worth of raw               
sequence data) into a single unified dataset of allelic read counts for nearly 300,000 variants of biomedical                 
relevance curated by NCBI dbSNP, where germline variants were detected in a median of 912 sequencing                
runs, and somatic variants were detected in a median of 4,876 sequencing runs, suggesting that this dataset                 
facilitates identification of sequencing runs that harbor variants of interest. Allelic read counts obtained using               
a targeted alignment were very similar to read counts obtained from whole-genome alignment. Analyzing              
allelic read count data for matched DNA and RNA samples from tumors, we find that RNA-seq can also                  
recover variants identified by Whole Exome Sequencing (WXS), suggesting that reprocessed allelic read             
counts can support variant detection across different library strategies in SRA. This study provides a rich                
database of known human variants across SRA samples that can support future meta-analyses of human               
sequence variation. 
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1. Introduction

The reduction of sequencing cost in recent years1 has allowed researchers to progress from              
sequencing and analyzing a single reference human genome to studying the individual genomes of              
thousands of subjects2. The large number of sequencing studies being conducted, together with             
journal publication requirements for authors to deposit raw sequencing runs in a centralized and              
open access sequencing archive like Sequence Read Archive (SRA)3 have made it possible to              
perform large scale data analysis on the millions of publically-available sequencing runs.  

The SRA contains raw sequencing runs from a variety of projects from large scale              
consortium studies including Epigenome Roadmap4, ENCODE5, The 1000 Genomes Project2, to           
small studies being conducted by various independent laboratories. However, the publicly available            
raw sequencing data are large in size which translates into high storage and computational              
requirements that hinder access for the broader research community. These requirements can be             
somewhat mitigated by using preprocessed data such as gene expression matrices, ChIP-seq peak             
files, or summarized variant information, as such files are much smaller in size. For example, the                
1000 Genomes project, The Cancer Genome Atlas (TCGA)6 and Genotype-Tissue Expression           
project (GTEx)7 all offer summarized variant information extracted from the raw sequences in             
Variant Call Format (VCF) files, containing allelic read counts for both reference and alternative              
alleles and base quality information which could be used for variant calling.  

There have been many efforts to reprocess raw sequencing reads to a more tractable form.               
However, many of the SRA data reprocessing efforts8,9 have focused on quantifying gene expression              
using public RNA-seq data deposited in the SRA. Sequencing data also capture information about              
sequence variants, raising the possibility of studying patterns of genetic variation using the SRA.              

†: corresponding author 
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The possibility of extracting variants from RNA-seq was demonstrated on a small scale in a 2015                
study10 where the authors extracted variants using the GATK RNA-seq variant calling pipeline on              
5,499 RNA-seq runs in the SRA.  

Variant calling typically requires multiple user-specified parameters such as a minimum           
cut-off for total or read-specific coverage, and usually attempts to model sequencing error explicitly.              
The primary information used in variant detection is the allelic fraction, the proportion of              
sequencing reads that support the variant position. Read mapping is highly concordant between             
alignment tools like bowtie11, bwa12, novoalign13, supporting the idea, at least for DNA and RNA               
sequencing experiments, estimates of allelic fraction should be fairly consistent regardless of the             
specific alignment tool. Using a conservative set of known genetic variants that are unlikely to be                
the result of sequencing errors, simple filters on coverage or allelic fraction should be sufficient to                
control error rates at acceptable levels. This would make it possible to collect and analyze known                
variants across the SRA without applying more complex variant callers.  

To explore this possibility, we constructed an allelic read count extraction pipeline to             
systematically reprocess all available sequencing runs from the SRA. We first applied standard             
quality filtering to the unaligned reads (see Methods) and then aligned the reads to a subset of the                  
human reference genome that covers 390,000 selected somatic and germline variants curated by the              
NCBI dbSNP14 using bowtie211. To show that this targeted reference does not introduce unwanted              
biases into the alignment step, we validated our pipeline performance against alignments performed             
using whole reference genomes. We next used the TCGA sample-matched Whole Exome            
Sequencing (WXS) and RNA-seq cohort to confirm that allelic read counts derived from RNA-seq              
accurately recover variants detected by WXS. We then applied this pipeline to systematically extract              
variants from over 250,000 sequencing runs in the SRA. Finally, we demonstrated that this allelic               
read count resource can be used to investigate variants in RNA sequencing studies, even at the                
single cell level.  

2. Results

2.1.  Building a fast allelic fraction extraction pipeline for the SRA 

As of the end of 2017 the SRA included data from           
10,642 human sequencing studies consisting of      
697,366 publicly available sequencing runs,     
encompassing various library strategies such as      
RNA-seq, WXS, whole genome sequencing (WGS),      
and ChIP-seq (Methods) and this number continues to        
increase at a rapid pace (Fig. 1). All of the human           
sequences deposited in the database were derived from        
samples carrying germline and somatic variants from       
the corresponding biospecimen regardless of the      
original study designs. This presents the opportunity to        

perform meta-analysis of human genetic variation across studies in the SRA. 
However, the complete SRA spans over 1,835 trillion bases, introducing both computational            

and storage resource requirements that would hinder most researchers from conducting a            
meta-analysis across many sequencing studies. Therefore, to enable efficient secondary analysis for            
researchers with limited access to high performance computing (HPC) infrastructure, we sought to             
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process this vast amount of data      
into a form that can fit on a        
1 TB hard disk. To accomplish     
this, we developed an efficient     
data processing pipeline (Fig.    
2).  
 
We first created a targeted     
alignment reference that   
focuses on regions that harbor     
known variants (n=393,242)   
curated by NCBI dbSNP14.    
These consist predominantly of    
variants with PubMed   
references or that have been     

referenced in selected variant databases     
(OMIM, LSDB, TPA, or in NCBI curated as        
diagnostic related). The variants consist     
mostly of missense mutations with     
synonymous and truncating mutations    
accounting for about 15% of the database.       
Most are germline variants, although the      
dataset includes a small set of curated somatic        
mutations15. The characteristics of the variants      
are summarized in Table 1.  

 
We created the reference alignment     

index by masking the reference to exclude       
DNA sequences outside of a region spanning       
the 1000 base pairs upstream and 1000 base        
pairs downstream of each variant. This      
filtering method had been first adopted by       
Deng et al. to optimize sequencing data       
processing turnaround times 16.  

 

2.2.  Large scale allelic read count extraction of human sequence data 

We retained only sequencing runs from the top five library strategies (RNA-seq, WGS, WXS,              
AMPLICON, ChIP-seq), and sequencing runs with more than 150 million bases sequenced            
(equivalent to at least three million reads if the samples have 50 bp per read), corresponding to a                  
total of 304,939 sequencing runs. Of these, 253,005 were successfully processed (Fig. 3) without              
error with 300 cpu-cores in 30 days. Library strategies were divided between paired-end (64.8%)              
and single-end (35.2%) sequencing. The difference between the number of pair-end sequencing and             
single-end sequencing reflects the differing needs of various experimental designs (Supplementary           

 

Pacific Symposium on Biocomputing 2019

198

 B
io

co
m

pu
tin

g 
20

19
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 7

6.
17

6.
20

5.
81

 o
n 

10
/2

7/
19

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.

https://paperpile.com/c/Vuzgmb/VG2t
https://paperpile.com/c/Vuzgmb/yjGN
https://paperpile.com/c/Vuzgmb/kM5z


 
Table 1). For example, paired-end sequencing greatly improves the identification of splice isoforms             
in RNA-seq and structural variants in exome-seq, whereas it         
provides fewer benefits for other library types that would         
justify the increased cost relative to single-end sequencing.  

One utility that emerges from reprocessing the       
sequencing data is for imputing experimental annotations.       
For example, the SRA metadata is not standardized to         
contain important experimental variables like read length or        
adaptor sequences, however this information can be easily        
determined from the raw sequences. A median read length         
of 95 bp was observed. Most runs (206,360 = 81.56%) had           
adaptors automatically detected and removed. Sequence and       
mapping statistics are detailed in the Supplementary Table        
1. Over these sequencing runs, a median of 2.98% of base           
pairs were identified as adaptors and were removed. A median base quality Phred score of 36 was                 
observed, suggesting a high overall quality of the sequenced bases in the SRA.  

Overall, a median of 296.3 million bases and 10,044,529 read fragments per sample were              
observed. A median of 5.83% of the reads were aligned to the targeted variant regions (Methods).                
Adding read length, adaptor contents, number of reads and percentage aligned to the metadata              
allows the user to better understand the quality of the sequencing runs and filter them accordingly.  

2.3.  Pipeline performance for targeted variant detection 

To assess the accuracy of allelic      
read counts extracted from this     
targeted reference we compared    
counts obtained through our pipeline     
to those extracted from samples     
pre-aligned to the complete hg38     
genome index and downloaded    
directly from the TCGA. We also      
took advantage of matched    
DNA/RNA sequencing in TCGA to     
evaluate the extent to which allelic      
read counts extracted from RNA-seq     
reflect the variants detected from     
WXS (See section 2.5). We used      
524 whole exome tumor sequences     
from the TCGA Low Grade Glioma      
(LGG) dataset to assess the     
performance of our pipeline, as this      
dataset included the well-known    

variant (IDH1 R132H) which could serve as a positive control.  
The reads from each tumor were aligned to the targeted SNP index and the allelic read                

counts were compared to the pre-generated alignments available from the TCGA. The resulting             
variant-locus-by-nucleotide read count matrix contains the read count for each of the four             
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nucleotides across the 393,242 targeted variants at 387,950 genomic sites. We then flattened the              
nucleic base read count matrix into a single allelic read count vector. For each sample, we compared                 
allelic read counts for all variants obtained using alignment to a targeted reference against allelic               
read counts obtained from the existing TCGA alignments to a complete reference. Read counts were               
highly correlated. Figure 4A shows an example from a single TCGA tumor (UUID:             
2b0048e0-a062-40d2-a1e1-4bb763ea0ead), in which a median of 98.2% variants differed less than           
one log2 fold change in allelic read count from the existing alignment (95% confidence interval:               
0.0088 - 0.0554). We found similar correlation across all 524 samples, with a median Pearson               
correlation (R) of 0.98 for the allelic read counts (95% CI: 0.928 - 0.992; Fig. 4B).  

2.4.  Effects of PCR duplicates on estimating allelic fraction 

We next evaluated the necessity of removing putative PCR duplicate reads after alignment based on               
the extent to which such duplicates bias the estimate of allelic fraction in TCGA. Although most                
sequence alignment pipelines include a step for removing duplicate reads that result from PCR              
amplification, recent studies have cast doubt on the benefit of doing so for variant analysis17,18. Also,                
naively removing the duplicated reads could result in overcorrection in high coverage sequencing19.  

We therefore  
investigated the effect   
of sequence duplicate   
removal for all 300k    
targeted variants across   
the 524 samples. We    
compared the allelic   
read counts extracted   
with and without   
duplicate removal for   
each tumor WXS   
alignment, and  
observed a median   
correlation of 0.983   
(95% CI: 0.983-0.990),   
suggesting duplicate  
removal had limited   
impact on allelic read    
counts. However, we   

did observe a substantial bias in allelic read count estimates when duplicates are included among               
sites with very high sequence read coverage. Figure 5A shows an example using UUID:              
0e2c395e-ddda-4833-b1ee-31a9bd08a845. In this sample, deduplicated allelic read counts recover         
88.9% of the original allelic read counts among all the variants with ≤100 reads support, while the                 
deduplicated allelic only recover 33.7% of the original allelic read count among all the variants with                
>100 reads, a 2.63 fold reduction in read count extracted from in the high coverage region (Fig. 5A,                  
slope of grey bar and red bar respectively). Nonetheless, across all 524 samples we observed a                
difference in allelic fraction < 0.05 for over 90% of the variants when duplicates were excluded,                
except in extreme cases with over 10,000 mapped reads (median 0.4% of the variants) (Fig. 5B).                
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Thus with high quality sequencing data, filtering duplicates should result in only minor             
improvement to the data.  

2.5.  Evaluating variant extraction from RNA-seq using matched DNA/RNA samples 

The SRA includes over 100k RNA-seq runs and these data contain information about the variant               
status of the transcribed DNA. To determine the extent to which variants can be extracted from                
RNA-seq by our pipeline, we first compared allelic fractions between matched exome sequencing on              
the one hand and RNA sequencing data in TCGA on the other. TCGA contains samples which have                 
been subjected to both WXS and RNA-seq, which makes it a natural resource for comparing the                
performance of variant calls derived from RNA-seq data using the WXS-derived variants. We             
evaluated the possibility of using allelic read counts from RNA-seq to detect both germline and               
somatic variants.  

To evaluate the reliability of allelic read counts for identifying germline variants in RNA               
sequence reads, we first compared read fractions for germline variants that were homozygous in the               
corresponding TCGA WXS sample. After collecting all sites that had at least 10 reads and were                
homozygous for the variant allele in the WXS read data, we evaluated the read counts at those same                  
sites in the RNA-seq data. A median of 5827 sites had at least 10 reads to support the variant in both                     
WXS and RNA-seq for each sample. Across all samples, a median of 97% (95% CI: 95.5% - 97.9%)                  
of sites that were homozygous in the DNA were also found to be homozygous in the matched                 
RNA-seq data.  

Next, we explored the utility of allelic read counts for identifying somatic mutations from              
RNA sequencing data. First, as a positive control, we evaluated the hotspot IDH1 somatic mutation               
on chromosome 2:208248388 with 395G>A in the template strand, which is most prevalent somatic              
variant in TCGA LGG on WXS as called by Varscan 20 (n=371, 70.80% of patients). This variant                 
had been previously identified as enriched in LGG tumors and its status is a major molecular                
prognostic factor in glioma as noted by the World Health Organization (WHO)21. Using the 524               
LGG tumors, we estimated allelic composition using read counts in the matched RNA-seq and WXS               
independently with our pipeline. The IDH1 mutation status in WXS exhibits a bimodal distribution              
(Fig. 6A). We selected 10 reads as the cutoff for defining a positive WXS variant. The reference                 
allele was detected in the WXS in all tumors, and 351 patients also had the alternative allele. Over                  
these patients the RNA-seq achieved an area under the precision recall curve (AUPRC) of 0.98 in                
detecting IDH1 variants observed in the WXS data ( Fig. 6B).  

We next evaluated   
the top 100 most    
frequently 
observed somatic  
variants reported  
by TCGA in the    
LGG samples that   
also coincided  
with the targeted   
variants, since  
recurrent 
mutations are  
more likely to be    
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drivers and present the most attractive therapeutic targets22. We used the Precision Recall Curve              
(PRC) framework to determine the extent to which allelic read counts supported expression of the               
mutant allele. RNA-seq generally recapitulated WXS variants (Fig. 6C), with 70% of the variants              
having an AUPRC > 0.8, suggesting that majority of the variants called by exome sequencing are                
expressed in the tumor. However, we do observe 6% of the variants with an AUPRC less than 0.1                  
when their presence was predicted from RNA-seq allelic fraction. Importantly, these later variants             
were found in fewer than 10 WXS samples, such that the most recurrent somatic mutations are also                 
more frequently consistently expressed. Thus while absence of a somatic variant cannot be             
definitively determined from RNA-seq (mutations can be present but not expressed), the most             
recurrent variants appear to be frequently expressed, suggesting that many somatic mutations of             
interest will be detectable in RNA-seq data from cancer studies deposited in the SRA. 

2.6.  Variant landscape of the SRA 

After validating the general reliability of our allelic fraction estimates, we analyzed 300K variants              
across the SRA. Properties of the variants are listed in Table 1. Of 300K variants, 170,292 were                 
referenced by PubMed and 138,559 were curated by NCBI as clinically-relevant variants. Out of              
156,757 variants with annotated functional effects, the majority were missense mutations           
(n=91,827). Also, 37,704 variants were annotated as somatic mutations, derived from cancer            

studies. Overall, the data included a median of        
three variants per gene across 21,889 genes.       
We collected read counts for reference and       
alternative alleles at these 300K positions for       
253,005 human sequencing samples in the      
SRA. We used default minimum threshold of       
two reads23 as the cut-off for Varscan20. The        
distribution of the number of variants are       
shown in Figure 7. Known germline variants       
were detected in a median of 912 sequencing        
runs, known somatic variants were detected in       

a median of 4,876 sequencing runs, and known reference alleles were detected in a median of                
33,232 sequencing runs. 337 somatic variants, 3,068 germline variants and 23,044 reference alleles             
were covered by at least two reads in more than half of the sequencing runs, suggesting that SRA                  
data can be repurposed for studying many variants. To facilitate the analysis of variants, we               
collected allelic read count in each SRA sample into a table (see Data Availability). This read count                 
file allows researchers to rapidly identify which sequencing runs in the SRA have read support for a                 
particular variant.  

2.7.  Extracting unannotated single cell variants in cancer in SRA 

Genotype annotations are often missing or incomplete in the SRA, and this limits the reusability               
of the SRA data. Here, we show that, using the reprocessed data, we were able to recover an                  
important oncogenic mutation BRAF V600E in a single cell RNA-seq study of a patient with               
myeloid leukemia at diagnosis and as well as at three and six months after diagnosis 24.  

Traditional variant calling relies on high sequencing depths to provide the statistical power             
to make confident calls. However, since each cell carries only two copies of each chromosome, the                
low recovery of single cell sequencing makes variant calling from DNA resequencing difficult.             
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Since RNA also contains information about underlying variants and may exist at hundreds of copies               
per cell 25, calling variants from single-cell RNA-seq data may circumvent the limitations of DNA              

resequencing for variants   
in transcribed regions. 
 
We were able to detect an      
important oncogenic  
mutation, BRAF V600E,   
in single cells using our     
unified allelic read counts.    
The overall read depth for     
the region was 45.9 reads     
and 17 sites within the 20      
bp windows around BRAF    
V600E had read support    

for the reference allele. Alternative alleles at the BRAF V600 hotspot were detected in more than                
95% cells (Fig. 8A). Also, the alternative allele (T) had a median base quality Phred score of 38                  
(Fig. 8B) and a median of 22.0 reads to support it (Fig. 8C). Interestingly, we observed a reduction                  
in the reference allele read count over the course of treatment (Fig. 8D) with a corresponding higher                 
fraction of reads supporting the alternate allele, suggesting that the clone with BRAF mutations              
became more prevalent among the surviving cancer cells, concording with the observation in the              
study that relapse occurred after treatment.  

3.  DISCUSSION 

Most published studies on non-protected raw sequencing data are expected to be deposited in the               
NCBI SRA as a result of journal requirements, and this vast amount of raw sequencing data                
represents a an opportunity to power large-scale meta-analyses for the interaction of sequence             
variants with experimental conditions. However, these petabytes worth of sequencing data introduce            
a computational challenge for analyzing such variants. One solution is to develop a map of relevant                
sequence variants in the SRA using allelic count profiles.  

To create allelic read count profiles from the SRA, we constructed a bioinformatics pipeline              
with short processing turnaround time by mapping the raw sequencing reads to a targeted reference               
specific to key somatic and germline variant(s) curated by the NCBI dbSNP. We validated the               
accuracy of the pipeline by comparing read counts obtained with targeted alignment to counts              
obtained using complete alignment pipelines, and evaluated genotype consistency across multiple           
sequencing datasets derived from the same sample. These results confirm that the targeted alignment              
pipeline generates allelic read counts that are highly correlated to those from whole genome              
alignments.  

Variant calling has traditionally been performed from DNA sequences, but WXS and WGS             
library strategies comprise only 40% of the total human SRA data. Thus we also sought to infer the                  
presence of variants from RNA-seq allelic read counts. While RNA may be less reliable for               
inferring the presence or absence of variants due to gene and allele-specific expression, 61.8% of the                
RNA-seq samples have more than a million reads mapped onto the targeted variant regions. We also                
found that highly recurrent somatic mutations detected in WXS of low grade gliomas were also               
frequently expressed in matched RNA-seq data. Thus, it would also be interesting to utilize the               
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germline allelic read counts extracted from the SRA RNAseq dataset to conduct a large-scale              
systematic EQTL study. We may also use the somatic allelic read counts in single cell cancer                
studies to help decipher the interactions between clonal mutations and clonal expressions in tumor              
heterogeneity.  

To the best of our knowledge, this is the first attempt to massively reprocess the human                
samples in the SRA for the purpose of extracting allelic read counts. The computational              
infrastructure required to generate variant data at scale presents a barrier to many researchers.              
Consortia that generate a large volume of sequencing data, such as GTEx, TCGA or the 1000                
Genome Project, all offer preprocessed files that enable researchers from the broader community to              
identify novel findings. Although variant calls are available for some of the datasets included in               
SRA, significant effort would be required to aggregate these disparate datasets, and most of the               
non-consortia SRA samples do not have such data available. Simply providing allelic read counts              
derived through a common bioinformatic pipeline also avoids technical variation that can result             
from different choice of computational tools and their associated parameter choices. Therefore, we             
contend that our unfiltered allelic read counts will have broad utility for post hoc analysis.  

Many applications require estimates of the magnitude of allelic fraction for inference. This             
would be particularly useful for questions related to imprinting or reconstruction of tumor subclonal              
architecture. We found that presence of duplicate reads did not significantly bias estimates of allelic               
fraction when the quality of the sequencing data is high. However for lower quality datasets or                
different library strategies, it may still be necessary to remove duplicate reads to obtain high quality                
estimates. Further analysis is merited to determine which datasets or variants are most confounded if               
duplicates are not removed. Future releases of the database will include estimates of allelic fraction               
both before and after removing PCR duplicates.  

In conclusion, by reprocessing the raw sequencing runs from the SRA, we improve the              
findability, accessibility, interoperability, reusability (FAIR)26 of of 250,000 sequencing runs. As the            
SRA continues to grow, it will be necessary to continuously update the map of variants present in                 
SRA samples. To support variant meta-analyses using the SRA, the next requirement will be              
unification of the SRA data, including biospecimen and experimental annotations. We anticipate            
that further refinement of the SRA through efforts such as this will promote reanalysis of existing                
datasets and lead to new biological discoveries. 

4.  METHODS 

4.1.  SRA Metadata download 
SRA metadata (files: NCBI_SRA_Metadata_Full_.tar.gz and SRA_Run_Members.tab) were       
downloaded from ftp.ncbi.nlm.nih.gov/sra/reports/Metadata/ on Jan 4 2018. These files contain the           
raw freetext biospecimen and experimental annotations. SRA_Run_Members.tab details the         
relationships between SRA project ID (SRP), sample ID (SRS), experiment ID (SRX) and             
sequencing run IDs (SRR). We processed only sequencing runs with accession visibility status             
“public”, with availability status “live”, and sequencing runs that contains more than 150 million              
nucleotides bases. We also only included sequencing runs generated from the following library             
strategies: RNA-Seq, WGS, WXS, ChIP-Seq, AMPLICON. Only samples with layout defined as            
either SINGLE or PAIRED were considered. We removed SRA study ERP013950 as we noticed it               
has annotation indicating a total of 85,608 WGS sequencing runs which seem to stem from               
erroneous submission, as it was only associated with nine biological samples (BioSample) IDs and              
the experimental annotation was unclear on the nature of the study.  
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4.2.  NCBI dbSNP structure 
NCBI dbSNP14 curated a set of SNPs and uses each bit in the bitfield encoding schema to indicate a                   
specific evidence support (ftp://ftp.ncbi.nlm.nih.gov/snp/specs/dbSNP_BitField_latest.pdf). Some evidence      
supports are derived from databases, for example, NCBI ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/),          
Online Mendelian Inheritance in Man (OMIM, url: https://www.omim.org/), Locus-Specific DataBases          
(LSDB, url: http://www.hgvs.org/locus-specific-mutation-databases), and Third Party Annotation (TPA, url:         
https://www.ddbj.nig.ac.jp/ddbj/tpa-e.html). ClinVar contains a curated set of published human         
variant-phenotype associations. OMIM contains the genotypes and phenotypes of all known mendelian            
disorders for over 15,000 human genes. LSDB provides gene-centric links to various databases that collect               
information about variant phenotypes. TPA is a nucleotide sequence data collection assembled from             
experimentally determined variants from DDBJ, EMBL-Bank (https://www.ebi.ac.uk/), GenBank,        
International Nucleotide Sequence Database Collaboration (INSDC) (http://www.insdc.org/), and/ or Trace          
Archive (https://trace.ncbi.nlm.nih.gov/Traces/home/) with additional feature annotations supported by        
peer-reviewed experimental or inferential methods.  
 
4.3.  Targeted reference building 
Variants were obtained from dbSNP (downloaded on 4, January on 2017 from            
ftp://ftp.ncbi.nlm.nih.gov/snp/organisms/human_9606_b150_GRCh38p7/VCF/00-All.vcf.gz), 
which contained 325,174,853 sites in total, effectively one tenth of our selected human reference              
genome length (3,099,734,149 bp, version: hg38). We retained only variants with a resource link to               
any of the existing databases or with support from NCBI curation, indicated by a non zero value for                  
byte 2 of Flag 1 in the NCBI bit field encoding schema, resulting in 393,242 variants. To generate a                   
targeted reference for these variants, we defined 1000 bp downstream and 1000 bp upstream of each                
SNP as the mapping window. All the regions outside of the windows were masked with base “N”                 
using bedtools v2.26.0 in the reference FASTA file. The reference index was built using bowtie2               
v2.2.611 with the merged FASTA file, using default parameters. 
  
4.4.  Extracting variants from raw sequencing read FASTQ file  
We used SRA3 prefetch v2.8.0 to download SRR files. Next, fastq-dump v2.4.2 from SRA tool kit                
was used to extract FASTQ files from SRR into the standard output stream. Trim Galore! version                
0.4.0 (url: https://github.com/FelixKrueger/TrimGalore) was then applied to identify adapter         
sequences using the first 10,000 reads, and the identified adaptor sequence was trimmed in the               
FASTQ file using cutadapt version 1.1627, the trimmed reads were then aligned onto the targeted               
reference (we did not use Trim Galore! to trim the adaptor as it cannot be easily UNIX piped).                  
Bowtie2 was run with the “--no-unal” parameter to retain only the reads mappable to the target                
regions in order to minimize the amount of aligned reads for sorting. The alignment file was than                 
sorted using samtools v1.2. and samtools idxstats was used for calculating the number of reads that                
mapped onto each FASTA reference record. bam-readcount v0.8.0 was used for extracting the             
per-base allelic read count and per-base quality in the sorted alignment file for each of the targeted                 
genomic coordinates. The paired-end reads were processed the same way as the single-end reads              
with the exception that paired-end and interleave reads options in fastq-dump, cutadapt, and             
bowtie2, were specified to ensure proper treatment of paired-end reads. The allelic read counts              
consist of both the reference allele and alternative allele, and they are retained in the output                
regardless of the zygosity.  
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4.5.  TCGA download  
A gdc_manifest was downloaded from the gdc portal on 2017-12-27. We downloaded the TCGA              
data using gdc-client v1.3.0. We downloaded the associated metadata using the TCGA REST API              
interface https://api.gdc.cancer.gov/files/. All the alignment files preprocessed from TCGA using          
GATK pipeline were downloaded. The alignment files were mapped onto GRCh38 with all the raw               
reads, including read sequence duplicates.  
 
5.  Supplementary code and data availability  
The python scripts for the pipeline and the jupyter-notebooks for generating the figures are              
deposited on github (https://github.com/brianyiktaktsui/Skymap ) and the data is publicly available          
on synapse (https://www.synapse.org/#!Synapse:syn11415602). Supplementary table 1 is available        
on http://hannahcarterlab.org/skymapvariantpsbsupplementarytable1/.  
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